Tetraacetylethylene and Nitrile Oxides: Synthesis of Spirofuranisoxazoles

G. Adembri*, A. Di Tommaso, L. R. Lampariello and M. Scotton*

Istituto di Chimica Organica, Piano dei Mantellini, 44
53100 Siena, Italy
Received April 4, 1988

trans and cis-3-Hexen-2,5-dione, 2, reacted with nitrile oxides to give 4,5-dihydroisoxazoles 3a-c with the trans configuration. On the contrary the reaction between 3,4-diacetyl-3-hexen-2,5-dione, 1, with nitrile oxides yielded 3-aryl-8,9-diacetyl-7-hydroxy-7-methyl-1,6-dioxa-2-azaspiro[4.4]nona-3,8-dienes 9a-e. The reaction is completely regiospecific. The cycloadducts show ring-open chain tautomerism.

J. Heterocyclic Chem., 25, 1621 (1988).

Alkenes bearing electron withdrawing groups easily react with 1,3-dipoles to give cycloadducts which can turn into aromatic systems. Thus 3,4-diacetyl-3-hexen-2,5-dione or tetraacetylethylene, 1, and 3-hexen-2,5-dione or diacetylethylene, 2, reacted with nitrilimines to give the corresponding acetylpyrazoles [1].

The behaviour of the ketone 2 with nitrile oxides is completely analogous giving the dihydroisoxazoles 3a-c. In the ¹H-nmr spectra the coupling constants are diagnostic in the structural assignments, since for all isoxazolines the $J_{4,5}$ value is in the range 4.3-6.0 Hz and is consistent with the hitherto reported values for *trans* protons in 4,5-dihydroisoxazoles [2,3]. The *cis* isomers show larger $J_{4,5}$ values.

Starting both from cis- and trans-diacetylethylene 2a and 2b, we isolated only the trans-cycloadducts 3a-c. Since the 1,3-dipolar cycloadditions are stereospecific, this result demonstrates that in every case an isomerisation takes place, which leads to the more stable isomer. The 4,5-dihydroisoxazoles 3a-c are not very stable but they change into the aromatic isoxazoles 4 and 5. The rate of this transformation is influenced by the nature of the arylnitrile oxide: in fact in the case of the 2,6-dichlorobenzonitrile oxide the isoxazoline 3c is not stable enough to be purified, while in the case of 4-chlorobenzonitrile oxide 3a we could not find a trace of the corresponding aromatic isoxazoles 4a and 5a. Compound 3b has an intermediate behaviour: all the three products were isolated and characterized.

Scheme 1

The 'H-nmr spectra of the isoxazoles **4b** and **4c** show, beside the aromatic protons, only the methyl signals of the acetyl groups, while those of the monoacetylisoxazoles **5b** and **5c** are characterized by the presence of a signal at δ 9.1 diagnostic of 5-unsubstituted isoxazoles.

Tetrasubstituted alkenes such as tetracarbethoxy-6 and diacetyldicarbethoxyethylene 7 do not react with nitrile oxides, possibly as a consequence of steric hindrance, even if it cannot be excluded an electronic effect. Contradicting data are reported in the literature for the planar tetracyanoethylene. While a paper [4a] states that 2,4,6-trimethylbenzonitrile oxide reacts with tetracyanoethylene giving the corresponding isoxazole, another paper [4b] reports that nitrile oxides react with the cyano groups giving oxadiazole derivatives.

Although tetraacetylethylene 1 is a nonplanar tetrasubstituted alkene [5,6], it reacts with nitrile oxides 8a-e, but it did not give the expected isoxazoles. The cycloadducts obtained were assigned the structure of 3-aryl-8,9-diacetyl-7-hydroxy-7-methyl-1,6-dioxa-2-azaspiro[4.4]nona-3,8-dienes 9a-e on the basis of spectral data and chemical behaviour.

Scheme 2

The ir spectra show strong bands at ca. 3400, 1690 and 1640 cm⁻¹ attributable to OH, CO and C=C groups respectively. The nmr spectra display the presence of an equilibrium mixture of two diastereoisomers. The equilibrium position is reached within a few minutes. For instance in the case of 9a in deuteriochloroform the ratio between the two diastereoisomers A and B is 69:31, while in hexadeuteriodimethyl sulphoxide it is 55:45. The open form C could not be detected.

Scheme 3

The main isomer A shows three singlets at δ 1.65, 2.34 and 2.54 attributable to the three methyl groups, an AB system at δ 3.64 (J = 17.8 Hz), a broad singlet at 3.80 for the OH group and AA'BB' system at 7.47 (J = 8.7 Hz) for the aromatic ring.

On the basis of the chemical shift of the methylene group ($\delta=3.6\text{-}3.7$) for all cycloadducts **9a-e** we discarded the regioisomer **10** for which a value at lower field is expected ($\delta=4.3\text{-}4.4$). The 5RS,7SR stereochemistry for the main diastereoisomer is revealed by the higher shift of the methyl group at 7-position ($\delta=1.65$) which is a direct result of the influence of the oxygen atom of the isoxazoline ring. Molecular models indicate that the stereoisomers **A** show minor strain than the isomer **B** where there is some congestion between the methyl group at 7 position and the isoxazoline methylene group.

The observed regioselectivity may be explained in terms

Table 1

Analytical and Spectral Data of Compounds 3-5, 9, 13-16

Compound	Yield %	Mp (°C) solvent	Formula		Analy Calcd.	sis % Found			IR, ν (cm ⁻¹);	UV λ max (log ϵ)
				С	Н	N	Cl	OH	CO	
3a	41	68-69 ether	C ₁₈ H ₁₂ NClO ₃	58.76 59.01	4.52 4.55	5.27 5.26	28.44 28.02		1710	
3 b	30	126-128 ether	$C_{13}H_{12}N_2O_5$	56.52 56.41	4.35 4.37	10.14 10.22			1720	
4 b	10	122-125 ether	$C_{15}H_{10}N_2O_5$	56.93 56.52	3.65 3.40	10.22 10.44			1700, 1680	
4c	35	93-97 cyclohexane	C ₁₃ H ₉ NCl ₂ O ₃	52.35 52.74	3.02 3.31	4.41	23.83 23.55		1710, 1680	
5c	40	118-120 ether	C ₁₁ H ₇ NCl ₂ O ₂	51.56 51.58	2.73 2.60	5.22	27.73 27.41		1680	
9a	93.7	128-120 ether	C ₁₇ H ₁₆ NClO ₅	58.37 58.14	4.58 4.57	4.01 3.97	10.16 9.78		1690	
9b	95.1	165-168 benzene	$C_{17}H_{16}N_2O_7$	56.62 56.99	4.44 4.46	7.77 7.75		3410	1690	297 (3.90)
9c	88.8	178-180 benzene	C ₁₇ H ₁₈ NCl ₂ O ₅	53.12 53.37	3.91 3.82		18.49 18.31		1700	268 (4.20)
9 d	82.5	119-122 ether	C ₁₈ H ₁₉ NO ₅	65.64 65.85	5.81 5.84	4.25 4.06		3370	1690	260 (3.87)
9e	82.5	100-102 ether	C ₁₇ H ₁₇ NO ₅	64.76 65.02	5.40 5.48	4.44 4.34		3340	1695	
13a	25	122-124 cyclohexane	C ₁₉ H ₁₈ NClO ₆	58.24 58.06	4.60 4.45	3.58 3.82	9.07 8.91		1760, 1710	
13b	20	128-130 ether	$C_{19}H_{18}N_2O_8$	56.72 56.55	4.48 4.47	6.97 6.83			1750, 1700	
14a	24	92-94 ether	C ₁₉ H ₁₈ NClO ₆	58.24 58.06	4.60 4.45	3.58 3.82	9.07 8.91		1750, 1690	
14b	19	47-49 ether	$C_{19}H_{18}N_2O_8$	56.72 56.68	4.48 4.41	6.97 6.72			1740, 1690	
15a	5	105-107 ether	C ₁₉ H ₁₆ NClO ₅	61.04 60.72	4.28 4.20	3.75 3.78	9.50 9.29		1760, 1710	
15b	5	134-137 ether	$C_{19}H_{16}N_2O_7$	59.38 59.29	4.17 4.08	7.29 7.05			1760, 1705	
16a	7	102-104 ether	$C_{21}H_{20}NClO_7$	58.13 58.12	4.61 4.58	3.23 3.14	8.19 8.35		1760, 1740, 16	95
16b	8	128-130 ether	$C_{21}H_{20}N_2O_9$	56.76 56.50		6.31 6.20			1760, 1740, 17	00

of the relative magnitudes of the coefficients in the LUMO's and HOMO's of the 1,3-dipole and the dipolarophile, and is consistent with literature data [6,7].

In these cycloaddition reactions no evidence for spiro adducts of type 10 or for cyclo adducts such as 11 could be obtained.

Scheme 4

Formation of the spiro adducts 9 can be rationalized if we admit an equilibrium between tetraacetylethylene and the tautomeric cyclic form 12. We have already hypothesized this intermediate 12 to justify the behaviour of the tetraketone 1 in various reactions [7,8]. Our efforts to isolate or to detect compound 12 by means of spectroscopic techniques were unsuccessful. The formation of com-

Table 2

¹H-nmr spectra of Compounds 3-5, 9, 13-16 [a]

Compound	% [b]	Me	Ac	CH ₂	СН	Ar	ОН
3a			2.21, 2.38		4.80 (d, J = 4.3) 5.15 (d, J = 4.3)	7.50 (AA'BB', J = 9.0)	
3b			2.29, 2.42		4.94 (d, J = 4.3) 5.27 (d, J = 4.3)	8.06 (AA'BB', J = 9.0)	
3 e			2.03, 2.43		4.95 (d, J = 6.0) 5.60 (d, J = 6.0)	7.42	
4 b			2.59, 2.74			8.08 (AA'BB', J = 9.0)	
4c			2.55, 2.77			7.38	
5b			2.42		9.16	8.08 (AA'BB', J = 9.0)	
5e			2.35		9.13	7.39	
9aA	69	1.65	2.34, 2.54	3.64 (AB, J = 17.8)		7.47 (AA'BB', J = 8.7)	3.80
9aB	31	1.84	2.37, 2.48	3.61 (AB, J = 17.8)		7.47 (AA'BB', J = 8.7)	3.80
9bA	78	1.67	2.35, 2.57	3.71 (AB, J = 18.0)		8.06 (AA'BB', J = 9.0)	3.66
9ЬВ	22	1.86	2.38, 2.51	3.63 (AB, J = 18.3)		8.06 (AA'BB', J = 9.0)	3.66
9cA	65	1.67	2.40, 2.52	3.59 (AB, J = 17.8)		7.37 (m)	3.75
9cB	35	1.84	2.35, 2.46	3.59 (AB, J = 18.7)		7.37 (m)	3.75
9dA	70	1.65, 2.39	2.34, 2.53	3.66 (AB, J = 17.6)		7.38 (AA'BB', J = 8.0)	3.54
9dB	30	1.83, 2.39	2.38, 2.48	3.63 (AB, J = 17.4)		7.38 (AA'BB', J = 8.0)	3.54
9eA	65	1.64	2.33, 2.53	3.67 (AB, J = 18.0)		7.28-7.57 (m)	3.91
9eB	35	1.83	2.36, 2.46	3.65 (AB, J = 18.0)		7.28-7.57 (m)	3.91
13a		1.88	2.10, 2.38, 2.41	3.63 (AB, J = 18.0)		7.48 (m)	
13b		1.90	2.14, 2.30, 2.46	3.69 (AB, J = 18.4)		8.05 (AA'BB', J = 9.0)	
14a		1.79	2.05, 2.33, 2.37	3.70 (AB, J = 18.2)		7.50 (AA'BB', J = 9.0)	
14b		1.82	2.08, 2.36, 2.40	3.77 (AB, J = 18.9)		8.07 (AA'BB', J = 9.0)	
15a			2.09, 2.53	3.73 (AB, J = 18.1)	5.26 (q, J = 2.3) 4.32 (d, J = 3.0) 4.66 (d, J = 3.0)	7.53 (AA'BB', J = 9.0)	
15Ь			2.11, 2.55	3.75 (AB, J = 19.0)	5.26 (q, J = 2.4) 4.30 (d, J = 3.1) 4.70 (d, J = 3.1)	8.06 (AA'BB', J = 9.0)	
16a		1.84	2.07, 2.08, 2.48	3.70 (AB, J = 18.4)	5.24 (q, J = 1.6)	7.50 (AA'BB', J = 8.7)	
16b		1.85	2.08, 2.09, 2.50	3.78 (AB, J = 18.6)	5.25 (q, J = 2.1)	8.07 (AA'BB', J = 9.0)	

[[]a] The signals are singlets, unless otherwise stated. [b] Isomeric ratios of the two diastereoisomers A and B calculated from nmr spectra.

pounds 9 demonstrate the presence of 12 in solution since it is trapped by the nitrile oxides.

Some attempts were made in order to trap the two tautomers A and B. The reaction of the spiro adducts 9a and 9b with acetic anhydride in the presence of traces of N,N-dimethyl-4-aminopyridine gave rise to a mixture of four compounds which were separated by column chromatography. The slowest compounds, which accounted for ca. 25% and 20% yield respectively, were assigned the structures 13 and 14. The minor components of the mixture which account for ca. 5% and 7% yield respectively, were tentatively assigned the structures 15 and 16 or 17 on the basis of analytical and spectral data.

Scheme 5

The mechanism for the formation of compounds 13-16 (or 17) may be rationalised keeping in mind ring-chain tautomerism. The acetic anhydride reacts with the closed form yielding the stereoisomers 13 and 14 and with the

Table 3

13C-NMR Spectra of Compounds 9b, 9c, and 9e [a]

	9b [b]	9c [b]	9e [c]
Ме	25.8, 26.7, 29.2 29.5, 30.2, 30.4	25.8, 26.8, 29.1 29.4, 30.1, 30.4	25.0, 26.9, 29.8 30.0, 30.3, 30.4
C-4	42.4, 42.6	45.1, 45.3	43.1, 43.5
C-7	106.8, 107.9	106.7, 107.8	107.1, 108.0
C-5	114.8, 115.3	114.1, 114.6	114.6, 114.8
C-Ar	124.0-148.3	127.3-133.9	126.9-130.9
C-8, C-9	135.1, 135.3 152.6, 152.9	134.9, 135.0 152.8, 153.1	137.3, 140.9 148.1, 150.9
C-3	156.7, 156.8	154.9, 155.0	158.1, 158.3
CO	185.4, 195.6 198.8, 199.1	195.2, 195.4 198.8, 199.0	196.5, 197.3 198.3, 198.6

[a] They are a mixture of the diastereoisomers ${\bf A}$ and ${\bf B}$. [b] In DMSO-d₆. [c] In deuteriochloroform.

open form leading to the intermediate 18. This intermediate may behave as tetraacetylethylene giving rise to a ring closure to yield compound 16 or 17: both can lose water by acetic anhydride action to give compound 15.

EXPERIMENTAL

Melting points were taken on a Kofler melting point apparatus and are uncorrected. Unless otherwise stated, the 'H-nmr spectra were recorded for deuteriochloroform solutions with a Hitachi-Perkin-Elmer apparatus R-600 instrument and '3C-nmr spectra with a Varian FT-80 A spectrometer; chemical shifts (J in Hz) are reported downfield from internal tetramethylsilane. The ir spectra were recorded on a Perkin-Elmer 782 spectrophotometer using samples in potassium bromide pellets.

Materials.

The nitrile oxides were prepared by conventional methods [3]. The following compounds were prepared by the literature procedure cited: tetraacetylethylene, 1 [2], cis-and trans-diacetylethylene 2, [9], 2,3-diacetyl-fumarate, 7, [10]. Ethene-1,1,2,2-tetracarboxylate, 6, was purchased from Fluka

General Procedure of the Reaction of Aryl Nitrile Oxides 8a-c with Diacetylethylene 2.

To a solution of diacetylethylene 2 (2.6 mmoles) in methylene chloride (10 ml) was slowly added a solution of the arylnitrile oxide 8a-c (2.6 mmoles) in methylene chloride (6 ml). The mixture was refluxed for 7 hours. The solution was evaporated to give a residue which was resolved by column chromatography using petroleum ether containing an increasing amount of ether as eluent. Compounds 3a-c, 4b,c, and 5b,c, were obtained and further purified by recrystallization (see Table 1 and Table 2 for analytical and spectral data).

General Procedure of the Reaction of Arylnitrile Oxides 8a-e with Tetra-acetylethylene 1.

To a solution of tetraacetylethylene 1 (5 mmoles), in methylene chloride (30 ml), was slowly added a solution of the arylnitrile oxide 8a-e (5 mmoles) in methylene chloride (20 ml) at 0°. The solution was stirred at room temperature for 24 hours. The solution was evaporated to give a residue which was crystallized to yield the cycloadducts 9a-e (see Table 1, Table 2, and Table 3 for analytical and spectral data).

Tables 1-3

General Procedure of the Reaction of the Cycloadducts 9a and 9b with Acetic Anhydride.

To a solution of the cycloadducts 9a and 9b (2.86 mmoles) in triethylamine (3.9 mmoles) was added 4,4-dimethylaminopyridine (0.1 mmole) followed by acetic anhydride (5.8 mmoles). The mixture was stirred at room temperature for 1 hour and basified with a solution of sodium carbonate. The solution was extracted with chloroform and the extracts were dried and evaporated. Column chromatography of the residue, eluted with ether-petroleum ether mixture first in a ratio 2:1, then in a ratio 1:1, gave in order of mobility compounds 15, 16, 13, and 14 (see Table 1 and Table 2 for analytical and spectral data).

REFERENCES AND NOTES

- [1] C. Adembri, A. M. Celli, and M. Scotton, J. Heterocyclic Chem., 25, 249 (1988).
- [2] M. C. Aversa, G. Cum, and M. Crisafulli Gazz. Chim. Ital., 8, 42 (1968).
- [3] G. Bianchi, C. De Micheli, R. Gandolfi, P. Grünanger, P. Vita-Finzi, and O. Vajna de Pava, J. Chem. Soc., Perkin Trans. I, 1148 (1973).
 - [4a] J. E. Franz, R. K. Howe, and H. K. Pearl, J. Org. Chem., 41, 620

- (1976); [b] Y. Chang. J. Sims, and K. N. Houk, Tetrahedron Letters, 4445 (1975).
- [5] G. Bianchi, R. Gandolfi, and C. De Micheli, J. Chem. Res. (S), 6 (1981).
- [6] P. Caramella and P. Grünanger in "1,3-Dipolar Cycloaddition Chemistry", Vol 1, A. Padwa, ed, John Wiley and Sons, Inc, New York, NY, 1984, p 291-392.
- [7] G. Adembri, C. Anselmi, A. M. Celli, L. R. Lampariello, and M. Scotton, *J. Heterocyclic Chem.*, 22, 569 (1984).
- [8] G. Adembri, R. Cini, D. Donati, R. Nesi, and M. Scotton, Can. J. Chem., 58, 1645 (1980).
 - [9] P. D. Williams and E. Le Goff, J. Org. Chem., 46, 4143 (1981).
- [10] G. Adembri, C. Anselmi, A. Camparini, A. M. Celli, and M. Scotton, Gazz. Chim. Ital., 113, 489 (1983).